

Lighttpd

Andre Bogus

Chapter No. 10
"Migration from Apache"

For More Information: www.packtpub.com/lighttpd/book

In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.10 "Migration from Apache"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Andre Bogus is a musician turned programmer. He has worked in different jobs from
voice acting to programming to teaching to managing software projects. At the moment
he works as a consultant and implementer for KOGIT GmbH, an Identity Management
company based in Germany.

He found Lighttpd while searching for the ideal software for his personal web server
and quickly learned the tricks to make it do what he wanted. He enjoys learning new
things and telling others about them. When his full schedule allows it, he can be found
on the #lighttpd IRC channel.

He wants to thank his wife, Ania, without whose support he would not
have been able to finish this book. Also he appreciates his employer for
allowing him to write besides his day job. The nice people at PACKT
Publishing have also earned his gratitude by helping this book to
become what it is.

http://www.packtpub.com/lighttpd/book

For More Information: www.packtpub.com/lighttpd/book

Lighttpd
This book explains downloading, installing, and configuring the Lighttpd HTTP server,
illustrates how to extend it with modules and Lua code, shows a migration path from
Apache httpd, gives case studies in setting up a number of popular web applications, and
even demonstrates how to extend Lighttpd by writing our own modules.

The name Lighttpd (pronounced "Lighty") is an abbreviation pulling together Light (as in
weight) and HTTPD (which is an abbreviation for Hypertext Transport Protocol Daemon,
in short web server). Early versions called themselves LightTPD to emphasize the
"lightweight" part, but this led to confusion over pronunciation and meaning, so the
capitalization was reduced.

What This Book Covers
Chapter 1 gives directions how to obtain Lighttpd. Regardless, if we want to use a binary
package or build from source, everything is there. In addition, dependencies, optional
packages, and compilation options are examined. After working through this chapter, we
should have an installed Lighttpd to work with.

Chapter 2 introduces all elements of the configuration language by example. Usable
examples include sending the correct MIME type, setting up multiple domains, rewriting,
and redirecting. Also the command line options are explained. For those who are not
fluent in regular expressions, the chapter has an excursion. At the end of this chapter, we
have our Lighttpd up and running.

Chapter 3 builds on the concepts of the second chapter and discusses the configuration
various CGI-like interfaces, three modules for virtual hosting, also introducing the
MySQL database, which is used in one of the modules.

Chapter 4 shows how to set up Lighttpd as a download or streaming server, covering
optimizations for large downloads as well as guarding our site against denial of service
attacks, dealing with proxies, and restricting download speeds for anonymous clients.

Chapter 5 extends our Lighttpd to learn more about our users: Geo-tracking the location
from the client IP address, dissecting the page traversal behavior ("clickstream analysis")
and other data points. Also responsible access logging practices are outlined.

Chapter 6 adds SSL support to our Lighttpd and walks through the steps to acquire or
create the required certificates, whether we obtain a certificate from a public or corporate
certificate authority, self-sign a certificate, or become our own certificate authority.

http://www.packtpub.com/lighttpd/book

For More Information: www.packtpub.com/lighttpd/book

Chapter 7 helps us securing our Lighttpd by authorizing access, limiting traffic by IP to
thwart denial-of-service attacks, and measuring our success by rigorously examination of
our log files. Setting up log rotate and log parsers is also covered.

Chapter 8 concerns itself with limiting the potential damage a subverted Lighttpd could
do to the system. The techniques to achieve this are reducing privileges and putting the
whole Lighttpd in a secluded environment. Containing Lighttpd and a CGI backend in
different environments is also demonstrated.

Chapter 9 shows a strategy to optimize our Lighttpd from system and configuration
settings to the source code itself. The chapter also shows specific optimizations known to
yield benefits across most systems.

Chapter 10 takes a pragmatic look on the migration path from Apache httpd. It shows
how to port basic configuration, rewrite and redirect rules, how to deal with .htaccess
files, and even discusses when not to migrate.

Chapter 11 revisits the CGI interfaces by getting various example applications from
Ruby on Rails over WordPress, phpMyAdmin, trac, and AWstats to AjaxTerm up and
running with our Lighttpd.

Chapter 12 adds the small and fast scripting language Lua to the mix, which can be used
to extend the functionality of Lighttpd by mod_magnet or as a backend language by the
Lua/FastCGI interface written by the same author as Lighttpd. Both options are
discussed, along with an introduction to the language itself.

Chapter 13 gives a run down of extending Lighttpd by extending existing modules or
even writing our own. With these modules, we can change the behavior of Lighttpd
from request parsing to sending or altering content. This chapter is aimed at an average
C programmer.

Appendix A lists the HTTP status codes that our Lighttpd can return on answering a
request, giving directions which chapter or other source might have more information
on each request.

Appendix B is the module and configuration index. Each configuration option for every
Lighttpd module of the official distribution is explained here in one or two short
sentences. Forgotten how a configuration option is written, what type it has or what it
means? Look no further.

http://www.packtpub.com/lighttpd/book

For More Information: www.packtpub.com/lighttpd/book

Migration from Apache
The most common web server used today is still Apache, so whilst we wait for
Lighttpd world domination, the migration from this server warrants its own
chapter. As this is a book on Lighttpd and not on Apache, this chapter assumes
some knowledge of the Apache confi guration. If anything is unclear, the Apache
documentation at http://apache.org/docs/ will hopefully help.

Now starting from a working Apache installation, what can Lighttpd offer us?

Improved performance for most cases (as in more hits per second)
Reduced CPU time and memory usage
Improved security (refer to Chapter 8 to maximize your return on investment)

Of course, the move to Lighttpd is not a small one, especially if our Apache
confi guration makes use of its many features. Systems tied into Apache as a module
may make the move hard or even impossible without porting the module to a
Lighttpd module or moving the functionality into CGI programs, if possible.

We can ease the pain by moving in small steps. The following descriptions assume
that we have one Apache instance running on one hardware instance. But we can
scale the method by repeating it for every hardware instance.

When not to migrate
 Before we start this journey, we need to know that our hardware and
operating systems support Lighttpd, that we have root access (or access
to someone who has), and that the system has enough space for another
Lighttpd installation (yes, I know, Lighttpd should reduce space concerns,
but I have seen Apache installations munching away entire RAID arrays).
Probably, this only makes sense if we plan on moving a big percentage of
traffi c to Lighttpd. We also might make extensive use of Apache module,
which means a complete migration would involve fi nding or writing
suitable substitutes for Lighttpd.

•

•

•

http://www.packtpub.com/lighttpd/book

For More Information: www.packtpub.com/lighttpd/book

Migration from Apache

[126]

Adding Lighttpd to the Mix
Install Lighttpd on the system that Apache runs on. Refer to Chapter 1 for
installation instructions. Find an unused port (refer to a port scanner if needed) to set
server.port to. For example, if port 4080 is unused on our system, we would look
for server.port in our Lighttpd confi guration and change it to:

server.port = 4080

If we want to use SSL, we should change all occurrences of the port 443 to another
free port, say 4443. We assume our Apache is answering requests on HTTP port 80.

Now let's use this Lighttpd instance as a proxy for our Apache by adding the
following confi guration:

server.modules = (
 #...
 "mod_proxy",
 #...
)

#...

proxy.server = (
 "" => { # proxy everything
 host => "127.0.0.1" # localhost
 port => "80"
)
)

This tells our Lighttpd to proxy all requests to the server that answers on localhost,
port 80, which happens to be our Apache server. Now, when we start our Lighttpd
and point our browser to http://localhost:4080/, we should be able to see the
same thing our Apache is returning.

What is a proxy?
 A Proxy stands in front of another object, simulating the proxied object
by relaying all requests to it. A proxy can change requests on the fl y, fi lter
requests, and so on. In our case, Lighttpd is the web server to the outside,
whilst Apache will still get all requests as usual.

http://www.packtpub.com/lighttpd/book

For More Information: www.packtpub.com/lighttpd/book

Chapter 10

[127]

Excursion: mod_proxy
 mod_proxy is the module that allows Lighttpd to relay requests to another web
server. It is not to be confused with mod_proxy_core (of Lighttpd 1.5.0), which
provides a basis for other interfaces such as CGI. Usually, we want to proxy only a
specifi c subset of requests, for example, we might want to proxy requests for
Java server pages to a Tomcat server. This could be done with the following
proxy directive:

proxy.server = (
 ".jsp" => (host => "127.0.0.1", port => "8080")
 # given our tomcat is on port 8080
)

Thus the tomcat server only serves JSPs, which is what it was built to do, whilst our
Lighttpd does the rest.

 Or we might have another server which we want to include in our Web presence at
some given directory:

 proxy.server = (
 "/somepath" => (host => "127.0.0.1", port => "8080")
)

Assuming the server is on port 8080, this will do the trick. Now http://localhost/
somepath/index.html will be the same as http://localhost:8080/index.html.

Reducing Apache Load
 Note that as most Lighttpd directives, proxy.server can be moved into a selector
(refer to Chapter 2), thereby reducing its reach. This way, we can reduce the set
of fi les Apache will have to touch in a phased manner. For example, YouTube™
uses Lighttpd to serve the videos. Usually, we want to make Lighttpd serve static
fi les such as images, CSS, and JavaScript, leaving Apache to serve the dynamically
generated pages.

Now, we have two options: we can either fi lter the extensions we want Apache
to handle, or we can fi lter the addresses we want Lighttpd to serve without
asking Apache.

http://www.packtpub.com/lighttpd/book

For More Information: www.packtpub.com/lighttpd/book

Migration from Apache

[128]

Actually, the fi rst can be done in two ways. Assuming we want to give all addresses
ending with .cgi and .php to Apache, we could either use the matching of
proxy.server:

proxy.server = (
 ".cgi" => (host = "127.0.0.1", port = "8080"),
 ".php" => (host = "127.0.0.1", port = "8080")
)

or match by selector:

$HTTP['url'] =~ "(.cgi|.php)$" {
 proxy.server = ("" => (host = "127.0.0.1", port = "8080"))
}

The second way also allows negative fi ltering and fi ltering by regexp—just use !~
instead of =~.

mod_perl, mod_php, and mod_python
 There are no Lighttpd modules to embed scripting languages into Lighttpd (with the
exception of mod_magnet, which embeds Lua) because this is simply not the Lighttpd
way of doing things. Instead, we have the CGI, SCGI, and FastCGI interfaces (refer to
Chapter 7) to outsource this work to the respective interpreters. In the next chapter,
there will be sample installations and confi gurations for some popular applications.

Most mod_perl scripts are easily converted to FastCGI using CGI::Fast. Usually,
our mod_perl script will look a lot like the following script:

use CGI;
my $q = CGI->new;
initialize(); # this might need to be done only once
process_query($q); # this should be done per request
print response($q); # this, too

Using the easiest way to convert to FastCGI:

use CGI:Fast # instead of CGI
while (my $q = CGI:Fast->new) { # get requests in a while-loop
 initialize();
 process_query($q);
 print response($q);
}

http://www.packtpub.com/lighttpd/book

For More Information: www.packtpub.com/lighttpd/book

Chapter 10

[129]

If this runs, we may try to put the initialize() call outside of the loop to make
our script run even faster than under mod_perl. However, this is just the basic case.
There are mod_perl scripts that manipulate the Apache core or use special hooks, so
these scripts can get a little more complicated to migrate.

 Migrating from mod_php to php-fcgi is easier—we do not need to change the
scripts, just the confi guration. This means that we do not get the benefi ts of an
obvious request loop, but we can work around that by setting some global variables
only if they are not already set. The security benefi t is obvious. Even for Apache,
there are some alternatives to mod_php, which try to provide more security, often
with bad performance implications.

 mod_python can be a little more complicated, because Apache calls out to the python
functions directly, converting form fi elds to function arguments on the fl y. If we
are lucky, our python scripts could implement the WSGI (Web Server Gateway
Interface). In this case, we can just use a WSGI-FastCGI wrapper. Looking on the
Web, I already found two: one standalone (http://svn.saddi.com/py-lib/trunk/
fcgi.py), and one, a part of the PEAK project (http://peak.telecommunity.com/
DevCenter/FrontPage). Otherwise, python usually has excellent support for SCGI.

As with mod_perl, there are some internals that have to be moved into the
confi guration (for example dynamic 404 pages, the directive for this is
server.error-handler-405, which can also point to a CGI script). However, for basic
scripts, we can use SCGI (either from http://www.mems-exchange.org/software/
scgi/ or as a python-only version from http://www.cherokee-project.com/
download/pyscgi/). We also need to change import cgi to import scgi and change
CGIHandler and CGIServer to SCGIHandler and SCGIServer, respectively.

.htaccess
 A lot of Lighttpd users converting from Apache ask if Lighttpd has any substitutes
for .htaccess fi les, which were made popular by Apache and are now a de-facto
Standard used by many web servers. Instead, Lighttpd has its own confi guration
syntax, so all the old .htaccess fi les won't work with Lighttpd.

There is no perfect solution to this problem, but as the most used feature of
.htaccess fi les is authentication, we can at least solve that. Let's have a look at the
authentication directive format in Apache and Lighttpd:

Apache just assumes that the path required for authentication is the path
where the .htaccess fi le resides, while Lighttpd needs to add this explicitly.
The httpd.conf adds some more stuff, which is given as default from
httpd.conf. In the lighttpd.conf example, we do not assume
such defaults.

•

•

http://www.packtpub.com/lighttpd/book

For More Information: www.packtpub.com/lighttpd/book

Migration from Apache

[130]

Note that the Lighttpd confi guration gets a little more complicated if we have
multiple backends or user fi les. In this case, we need to use a selector to limit the
reach of our directives. For example, assume that we want digest authentication
for internal.mydomain.com, but htpasswd authentication for some directories in
mydomain.com, with a different htpasswd fi le for the messages directory:

server.modules = (..., "mod_auth", ...)

auth.backend = "htpasswd"
auth.backend.htpasswd.userfile = "/web/general/.htpasswd"

$HTTP["host"] == "internal.mydomain.com" {
 auth.backend = "htdigest"
 auth.backend.htdigest.userfile = "/web/internal/.htdigest"
 auth.require = (
 "/" => (
 "method" => "digest",
 "realm" => "internal",
 "require" => "valid-user"
)
)
}
else
$HTTP["url"] =~ "^/messages" {
 auth.backend.htpasswd.userfile = "/web/messages/.htpasswd"
 auth.require = (
 "/" => (
 "method" => "basic",
 "realm" => "messages",
 "require" => "valid-user"
)
)
}

auth.require = (# This table assigns authentication requirements
 # to directories or file types.
 "/admin/" => (# everything below the /admin path
 "method" => "basic",
 "realm" => "admin",
 "require" => "user=andre|user=bob" # allow only bob and me
),
 "/download" => (
 "method" => "basic",
 "realm" => "download",
 "require" => "valid-user"
),

http://www.packtpub.com/lighttpd/book

For More Information: www.packtpub.com/lighttpd/book

Chapter 10

[131]

 ".private" => (# all files ending with .private
 "method" => "basic",
 "realm" => "private",
 "require" => "user=andre"
)
 # ... we could add more directories here.
)

 The fi rst selector marks out a region internal.mydomain.com, where we then use
digest authentication. The next selector catches the message directory everywhere
else and includes the use of the /web/messages/.htpasswd user fi le. Finally, we add
all the requirements for the other directories.

Note that the following two are identical:

$HTTP["url"] =~ "^/messages" {
auth.require = ("/" => (...))
}

auth.require = ("/messages" => (...))

But the left version is more fl exible as it allows defi ning different user fi les and
backends for each path that matches a certain pattern. Armed with this knowledge,
we can write a small script that runs through our web root, fi nds all .htaccess fi les
and emits corresponding Lighttpd confi guration (at least for the access directives). In
fact we do not even need to do this, because I already did the coding:

#!/bin/env python
import os
def toUserList(users):
 return "|".join(["user="+user for user in users.split(" ")])
 def groups(groupFileName, gps):
 groupFile = open(groupFileName)
 groupDict = {}
 for groupLine in groupFile:group, users = groupLine.split(":")
 groupDict[group.strip()] = users.strip()
 return "|".join([toUserList(groupDict[g])
 for g in gps.split(" ")])
for (root, dirs, files) in os.walk(path):
 if ".htaccess" not in files: continue
 filepath = os.path.join(root, ".htaccess")
 f = open(filepath)
 try:
 realm = root.rsplit(os.path.sep, 1)[1]
 except:
 realm = root
 try:

http://www.packtpub.com/lighttpd/book

For More Information: www.packtpub.com/lighttpd/book

Migration from Apache

[132]

 # try some sensible defaults
 r = {"authtype":"Basic", "url":root,
 "required":"nothing","realm":realm,
 "authuserfile":os.path.join(root, ".htpasswd",
 "error":None}
 for line in f:
 try:
 tempdirective, arguments = line.split(" ", 1)
 directive = tempdirective.lower()
 r[directive] = arguments.strip('"')
 except:
 pass
 if r["required"].startswith("user"):
 r["required"] = toUserList(r["required"][5:])
 elif r["required"].startswith("group"):
 r["required"] = groups(r["authgroupfile"], r["required"][6:])
 if r["required"] != "nothing" and r["error"] is None:
 r["backend"] = {"Basic":"htpasswd",
 "Digest":"htdigest"}[r["authtype"]]
 r["authtype"] = r["authtype"].lower()
 print """$HTTP["url"] =~ "%{url}s" {
 auth.backend = "${backend}s"
 auth.backend.${backend}s.userfile = "${authuserfile}s"
 auth.require = ("/" => (
 "method" => "${authtype}s",
 "realm" => "${realm}s",
 "require" => "${required}s"
))
}""" % r;
 finally:
 f.close()

 The htaccess2lighttpd.py script is available at
http://www.packtpub.com/files/code/2103_Code.zip.

Note the script does have one limitation: Lighttpd does not handle groups. However,
it allows specifi cation of a list of users directly, as in user=andre|user=bob that we
required for admin access. The other way is to have a separate password fi le for
each group. The script, however, takes the fi rst way. This means that we need to
re-run the script each time a group membership changes. So this solution would only
be temporary—the move to per-group access fi les can then be made without
being hectic.

http://www.packtpub.com/lighttpd/book

For More Information: www.packtpub.com/lighttpd/book

Chapter 10

[133]

.htaccess and PHP
 Apart from that, some users might put PHP options into the .htaccess fi les. Pier
Alan Joye maintains a htscanner program to ease the transition. It is available at
http://pecl.php.net/package/htscanner. This program basically moves PHP
options from .htaccess fi les into the php.ini fi le.

Rewriting Rules
 On the Lighttpd forums, most former Apache administrators ask how they can adapt
their rewrite rules to work with Lighttpd. There is no program (yet) to do this, but
here are some typical constructs and advice on how to do that in Lighttpd lingua:

Apache Lighttpd

LoadModule "rewrite_module"
RewriteEngine on

server.modules = (..., "mod_rewrite",
"mod_redirect", ...)

A simple rewrite
RewriteRule ^from_here(.*)/to_there$1

refer to Chapter 2
url.rewrite = ("^/from_here" => "to_there")

RewriteCond %{HTTP_HOST} me\..*
RewriteRule ^/(.*) /me/$1

$HTTP["host"] =~ "me\..*" {
url.rewrite = ("^/" => "/me/"

}

Redirecting a single fi le
RewriteRule move.html target.html [R]

url.redirect =
("move.html" => "target.html")

Solving the trailing slash problem
RewriteCond %{REQUEST_FILENAME} -d
RewriteRule (.*) $1/

nothing to do here. Lighttpd does not
have this problem.

Redirecting failed web pages to xyz.com
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.+) http://xyz.com/$1

use an CGI error page that redirects
server-error-handler-404 = "redirect.cgi"
see Chapter 12 on how to do this in lua

Time-based multiplexing
RewriteCond %{TIME_HOUR} > 07
RewriteCond %{TIME_HOUR} < 19
RewriteRule ^foo.html foo.day.html
RewriteRule ^foo.html foo.night.html

either use mod_magnet, see Chapter 12, or
solve this outside of Lighttpd, for example
by using a cron job to set symbolic links.

http://www.packtpub.com/lighttpd/book

For More Information: www.packtpub.com/lighttpd/book

Migration from Apache

[134]

Apache Lighttpd

Rewrite for google bot
RewriteCond %{HTTP_USER_AGENT} \

Google
RewriteRule ^(.+) /bots/$1

match for useragent
$HTTP["useragent"] =~ "Google" {

url.rewrite = "^/" => "/bots"
}

Rewrite by cookie (missing session)
RewriteCond %{HTTP_COOKIE} sess [N]
RewriteRule ^(.+) index.php

use a negative regexp match
$HTTP["cookie"] !~ "sess" {

url.rewrite = ("(.*)" => "index.pho")
}

set environment variable based on query
RewriteCond %{QUERY_STRING} \

id=([^&]*)
RewriteRule ^(.*)$ /$1 [E=ID:%1]

server.modules += ("mod_setenv")
$HTTP["url"] =~ "[?&]id=([^&]*)" {

setenv.add_request_header = "ID: %1"
}

block images by referer
RewriteCond %{REFERER} !^$
RewriteCond %{REFERER} !my\.net [NC]
RewriteRule ^images/*.png - [F]

deny for non-empty outside referers
$HTTP["referer"] !~ "^($|.*my\.net) {

url.access-deny = (".png")
}

 Naturally this table cannot cover all aspects of Apache rewrite rules, but remember
that all complex systems have emerged from simple systems. The following chapter
will show how to set up some oft-used web applications with Lighttpd.

WebDAV
 Apache does WebDAV out of the box, while Lighttpd needs the mod_webdav module
to support WebDAV, and it still has some rough edges. For example, Window users
will fi nd that their mod_auth login does not work when they activate WebDAV;
this can be compensated by a cookie-based login. Oh, and we need to have webdav
support confi gured at compile time, if we built our Lighttpd from source. The
confi guration, as always, is pretty straightforward:

server.modules += ("mod_webdav")

 # activate WebDAV for the server "dav.my.net"
 $HTTP["host"] == "dav.my.net" {
 webdav.activate = "enable"

http://www.packtpub.com/lighttpd/book

For More Information: www.packtpub.com/lighttpd/book

Chapter 10

[135]

 # enable writing for members only (identify by sess cookie)
 $HTTP["cookie"] !~ "sess" {
 $HTTP["url"] =~ "^/members/" {
 webdav.is-readonly = "enable"
 }
 }
}

The important directives here are webdav.activate and webdav.is-readonly. The
former activates WebDAV, if we set it to enable. Otherwise, WebDAV is deactivated
by default. The latter forbids operations that modify fi les on the server (PUT and
DELETE), and is disabled by default. So unless we enable this option, PUT and
DELETES are served.

Summary
There are some obstacles on the way from Apache to Lighttpd. But a planned and
careful approach will allow us to keep our server working while we change it. The
.htaccess scanner script can be a stop gap measure to smoothen the transition for
.htaccess authentication users. Finally, a heavy use of rewrite rules can make it
tricky to move. However, we can translate them one by one into something that will
work with Lighttpd, especially when we add Lua to the mix as we will show in the
following chapter.

http://www.packtpub.com/lighttpd/book

For More Information: www.packtpub.com/lighttpd/book

Where to buy this book
You can buy Lighttpd from the Packt Publishing website:
http://www.packtpub.com/lighttpd/book

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please
read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and
most internet book retailers.

www.PacktPub.com

http://www.packtpub.com/Shippingpolicy
http://www.packtpub.com/
http://www.packtpub.com/lighttpd/book
http://www.packtpub.com/Shippingpolicy

